Compiled binaries of Qt 5.3 for the Raspberry Pi (ARMv6) and Pi 2 (ARMv7-A)

At the time of writing Qt 5.4 release existed but I found it has number of bugs that affect multimedia capabilities of the Raspberry Pi.

Download the following binary release and install using following instructions. Instructions assume you still have the user pi in your Raspberry Pi system and make command installed as well (sudo apt-get install make). For the wget command, use the address found in “Download” link below the instructions.

ssh pi@<ip-of-the-rpi>

mkdir -p Qt5.3.2/qt-everywhere-opensource-src-5.3.2

cd Qt5.3.2

wget https://s3-ap-southeast-2.amazonaws.com/purinda.com/raspberrypi/qt-everywhere-opensource-src-5.3.2_compiled_armv7l.tar.gz

tar xf qt-everywhere-opensource-src-5.3.2_compiled_armv7l.tar.gz -C qt-everywhere-opensource-src-5.3.2

cd qt-everywhere-opensource-src-5.3.2

sudo make install

After running “make install”, binaries will be copied to the /usr/local/qt5 so you can remove the /home/pi/Qt5.3.2 directory.

Raspberry Pi still doesn’t know how to use the Qt 5.3.2 libraries as we haven’t instructed where the library files are. So you need to edit your .bashrc and stick following lines in there which sources the Qt libraries.

export LD_LIBRARY_PATH=/usr/local/qt5/lib/
export PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games:/usr/local/qt5/bin

Precompiled binaries: Download

The problem

If you are like me running Raspbian on your “Raspberry Pi” or “Raspberry Pi 2”, you will figure out that Raspbian pointing to the following package repository doesn’t contain Qt libraries.

deb http://mirrordirector.raspbian.org/raspbian/ wheezy main contrib non-free rpi

Then tried searching for a solution and almost all require you to Cross-compile qt source, which I am not a big fan of as you need to cross-compile dependencies of Qt libraries to get Qt to compile without choking on some incorrectly cross-compiled dependency.

So I thought of compiling the Qt source package on shiny new Raspberry Pi 2, which has quad-cores and 1GB of RAM so I thought it will be faster to compile directly on it, and ran the ./configure and make -j3 (-j3 here is telling make command to use 3-cores to compile) with following settings enabled.

Build options:
Configuration ………. accessibility accessibility-atspi-bridge alsa audio-backend c++11 clock-gettime clock-monotonic concurrent cups dbus evdev eventfd fontconfig full-config getaddrinfo getifaddrs glib iconv icu inotify ipv6ifname large-config largefile libudev linuxfb medium-config minimal-config mremap nis no-harfbuzz openssl pcre png posix_fallocate precompile_header pulseaudio qpa qpa reduce_exports release rpath shared small-config system-freetype system-jpeg system-png system-zlib xcb xcb-glx xcb-plugin xcb-render xcb-xlib xinput2 xkbcommon-qt xlib xrender
Build parts ………… libs
Mode ………………. release
Using C++11 ………… yes
Using PCH ………….. yes
Target compiler supports:
iWMMXt/Neon ………. no/auto

Qt modules and options:
Qt D-Bus …………… yes (loading dbus-1 at runtime)
Qt Concurrent ………. yes
Qt GUI …………….. yes
Qt Widgets …………. yes
Large File …………. yes
QML debugging ………. yes
Use system proxies ….. no

Support enabled for:
Accessibility ………. yes
ALSA ………………. yes
CUPS ………………. yes
Evdev ……………… yes
FontConfig …………. yes
FreeType …………… yes (system library)
Glib ………………. yes
GTK theme ………….. no
HarfBuzz …………… no
Iconv ……………… yes
ICU ……………….. yes
Image formats:
GIF ……………… yes (plugin, using bundled copy)
JPEG …………….. yes (plugin, using system library)
PNG ……………… yes (in QtGui, using system library)
journald …………… no
mtdev ……………… no
Networking:
getaddrinfo ………. yes
getifaddrs ……….. yes
IPv6 ifname ………. yes
OpenSSL ………….. yes (loading libraries at run-time)
NIS ……………….. yes
OpenGL / OpenVG:
EGL ……………… no
OpenGL …………… no
OpenVG …………… no
PCRE ………………. yes (bundled copy)
pkg-config …………. yes
PulseAudio …………. yes
QPA backends:
DirectFB …………. no
EGLFS ……………. no
KMS ……………… no
LinuxFB ………….. yes
XCB ……………… yes (system library)
EGL on X ……….. no
GLX ……………. yes
MIT-SHM ………… yes
Xcb-Xlib ……….. yes
Xcursor ………… yes (loaded at runtime)
Xfixes …………. yes (loaded at runtime)
Xi …………….. no
Xi2 ……………. yes
Xinerama ……….. yes (loaded at runtime)
Xrandr …………. yes (loaded at runtime)
Xrender ………… yes
XKB ……………. no
XShape …………. yes
XSync ………….. yes
XVideo …………. yes
Session management ….. yes
SQL drivers:
DB2 ……………… no
InterBase ………… no
MySQL ……………. yes (plugin)
OCI ……………… no
ODBC …………….. yes (plugin)
PostgreSQL ……….. yes (plugin)
SQLite 2 …………. yes (plugin)
SQLite …………… yes (plugin, using bundled copy)
TDS ……………… yes (plugin)
udev ………………. yes
xkbcommon ………….. yes (bundled copy, XKB config root: /usr/share/X11/xkb)
zlib ………………. yes (system library)
NOTE: libxkbcommon and libxkbcommon-x11 0.4.1 or higher not found on the system, will use
the bundled version from 3rd party directory.
NOTE: Qt is using double for qreal on this system. This is binary incompatible against Qt 5.1.
Configure with ‘-qreal float’ to create a build that is binary compatible with 5.1.
Info: creating super cache file /home/pi/Qt5.3.2/qt-everywhere-opensource-src-5.3.2/.qmake.super

Qt is now configured for building. Just run ‘make’.
Once everything is built, you must run ‘make install’.
Qt will be installed into /usr/local/qt5

Prior to reconfiguration, make sure you remove any leftovers from
the previous build.

After good 4-5 hours the make finished and end up with the binaries.

Some information regarding the build environment

uname -a

Linux thor 3.18.5-v7+ #225 SMP PREEMPT Fri Jan 30 18:53:55 GMT 2015 armv7l GNU/Linux

cat /proc/version

Linux version 3.18.5-v7+ (dc4@dc4-XPS13-9333) (gcc version 4.8.3 20140303 (prerelease) (crosstool-NG linaro-1.13.1+bzr2650 – Linaro GCC 2014.03) ) #225 SMP PREEMPT Fri Jan 30 18:53:55 GMT 2015

libc6 info

Package: libc6
State: installed
Automatically installed: no
Multi-Arch: same
Version: 2.13-38+rpi2+deb7u7
Priority: required
Section: libs
Maintainer: GNU Libc Maintainers <debian-glibc@lists.debian.org>
Architecture: armhf
Uncompressed Size: 8,914 k
Depends: libc-bin (= 2.13-38+rpi2+deb7u7), libgcc1
Suggests: glibc-doc, debconf | debconf-2.0, locales
Conflicts: prelink (<= 0.0.20090311-1), tzdata (< 2007k-1), tzdata-etch
Breaks: locales (< 2.13), locales-all (< 2.13), nscd (< 2.13)
Provides: glibc-2.13-1
Description: Embedded GNU C Library: Shared libraries
Contains the standard libraries that are used by nearly all programs on the system. This package includes shared versions of the standard C library and the standard math library, as well as many others.
Homepage: http://www.eglibc.org

build directory

/home/pi/Qt5.3.2/qt-everywhere-opensource-src-5.3.2/

install directory

/usr/local/qt5

Weekend Project: Pi Music Box – Raspberry Pi as a Music streaming device

Get Grooveshark to run on a Raspberry Pi, Let your friends connect to and vote for their favourite songs. Let the majority rule what you hear at home or office.

We used to play songs regularly at work. Most of the time I play Dubstep while rest of the team want to listen to Trance or a different genre, this is where the clash of genres occur. This is where this system would be useful, if you get this running on a network then you can ask people to search their favourite songs and queue them in the system. Based on the votes they/others make for the song, it may float up or down making it either famous or not-so-famous. This makes a playlist of highest voted or popular songs.

The basic idea of the system is you connect the computer that streams music to a speaker/stereo. The system consists of two applications, one is used for streaming music and controlling the output of songs while the other interface/application takes user inputs via a Web Browser.

Media Streaming Application

Media streaming application is a console based service that runs in a threaded environment (multiple threads) to handle a player and a TCP server to accept user connections and pass user commands to the player to control the music output.

The preferred framework for most of my cross-application development is Qt, so I went with it for this project as well. I used the latest release of it which is Qt 5.1. I have specifically programmed this application to run on single board computers that run embedded Linux which implements a TCPIP stack and GStreamer based audio playback.

If you look at the “grooveshark-server” project hosted in Github you should be able to understand how to get it up and running on a Raspberry Pi, a Beaglebone or any other type of single board embedded computer. I still prefer you to give it a try on your desktop computer first and make sure it compiles correct on your x86 or x86_64 box before running it on ARM based environment.

In a nutshell all you need to do is to get Qt 5.1 running with Qt Core, Multimedia and Networking modules and then run Gstreamer with HTTPs based streaming plugin and mpeg4 decoder (this is found under “gstreamer ugly” package section of your distribution).

User Interface

The purpose of this application is to show a pretty interface to the user and let them search their favourite songs and queue them in the media streaming server, which we discussed above., since the above application only accepts 5 or so commands, this UI shows a eye-candy interface to the user and let them control the playlists and player attributes.

I cheated here, I could have implemented this into the media streaming server as a HTTP server (probably by embedding something like mongoose), implement my own templating engine in C and make it serve dynamic content. Since I wanted to make this project short-and-sweet (preferably finish within a weekend or so — basics :D ) I chose LAMP stack to build the Web based user interface to control the media server. This gives an added bonus of letting it run on the embedded computer (that runs the media streaming server) or another server sitting on the same network (this is achieved via TCP service that media server implements).

UI is build with LAMP stack as I mentioned before. jQuery and Bootstrap 3 is used for front-end content manipulation.

Look below for source code and demo of both applications working together to build a complete media streaming system.

frontpage navmenu search_results

Source
Server: https://github.com/purinda/grooveshark-server
UI: https://github.com/purinda/grooveshark-webui

Demos